Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.109
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612519

RESUMO

Angiopoietin-like 3 (ANGPTL3) is a hepatokine acting as a negative regulator of lipoprotein lipase (LPL). Vupanorsen, an ANGPTL3 directed antisense oligonucleotide, showed an unexpected increase in liver fat content in humans. Here, we investigated the molecular mechanism linking ANGPTL3 silencing to hepatocyte fat accumulation. Human hepatocarcinoma Huh7 cells were treated with small interfering RNA (siRNA) directed to ANGPTL3, human recombinant ANGPTL3 (recANGPTL3), or their combination. Using Western blot, Oil Red-O, biochemical assays, and ELISA, we analyzed the expression of genes and proteins involved in lipid metabolism. Oil Red-O staining demonstrated that lipid content increased after 48 h of ANGPTL3 silencing (5.89 ± 0.33 fold), incubation with recANGPTL3 (4.08 ± 0.35 fold), or their combination (8.56 ± 0.18 fold), compared to untreated cells. This effect was also confirmed in Huh7-LX2 spheroids. A total of 48 h of ANGPTL3 silencing induced the expression of genes involved in the de novo lipogenesis, such as fatty acid synthase, stearoyl-CoA desaturase, ATP citrate lyase, and Acetyl-Coenzyme A Carboxylase 1 together with the proprotein convertase subtilisin/kexin 9 (PCSK9). Time-course experiments revealed that 6 h post transfection with ANGPTL3-siRNA, the cholesterol esterification by Acyl-coenzyme A cholesterol acyltransferase (ACAT) was reduced, as well as total cholesterol content, while an opposite effect was observed at 48 h. Under the same experimental conditions, no differences in secreted apoB and PCSK9 were observed. Since PCSK9 was altered by the treatment, we tested a possible co-regulation between the two genes. The effect of ANGPTL3-siRNA on the expression of genes involved in the de novo lipogenesis was not counteracted by gene silencing of PCSK9. In conclusion, our in vitro study suggests that ANGPTL3 silencing determines lipid accumulation in Huh7 cells by inducing the de novo lipogenesis independently from PCSK9.


Assuntos
Lipogênese , Pró-Proteína Convertase 9 , Humanos , Lipogênese/genética , Subtilisinas , Inativação Gênica , RNA Interferente Pequeno/genética , Colesterol , Angiopoietinas/genética , Coenzima A , Proteína 3 Semelhante a Angiopoietina
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612853

RESUMO

While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8's functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.


Assuntos
Disfunção da Glândula Tarsal , Glândulas Tarsais , Humanos , Lipogênese/genética , Western Blotting , Capsaicina/farmacologia
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563227

RESUMO

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFI/metabolismo , Galinhas/genética , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipogênese/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Apoptose , Inflamação/metabolismo , Inflamação/veterinária , Proliferação de Células
4.
Cell Rep Med ; 5(3): 101477, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508143

RESUMO

Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.


Assuntos
Fígado Gorduroso , Receptor A1 de Adenosina , Humanos , Camundongos , Animais , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Fígado Gorduroso/tratamento farmacológico , Lipogênese/genética , Dieta Hiperlipídica/efeitos adversos
5.
Mol Metab ; 82: 101913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458567

RESUMO

OBJECTIVE: Adipose tissue mass is maintained by a balance between lipolysis and lipid storage. The contribution of adipose tissue lipogenesis to fat mass, especially in the setting of high-fat feeding, is considered minor. Here we investigated the effect of adipose-specific inactivation of the peroxisomal lipid synthetic protein PexRAP on fatty acid synthase (FASN)-mediated lipogenesis and its impact on adiposity and metabolic homeostasis. METHODS: To explore the role of PexRAP in adipose tissue, we metabolically phenotyped mice with adipose-specific knockout of PexRAP. Bulk RNA sequencing was used to determine transcriptomic responses to PexRAP deletion and 14C-malonyl CoA allowed us to measure de novo lipogenic activity in adipose tissue of these mice. In vitro cell culture models were used to elucidate the mechanism of cellular responses to PexRAP deletion. RESULTS: Adipose-specific PexRAP deletion promoted diet-induced obesity and insulin resistance through activation of de novo lipogenesis. Mechanistically, PexRAP inactivation inhibited the flux of carbons to ethanolamine plasmalogens. This increased the nuclear PC/PE ratio and promoted cholesterol mislocalization, resulting in activation of liver X receptor (LXR), a nuclear receptor known to be activated by increased intracellular cholesterol. LXR activation led to increased expression of the phospholipid remodeling enzyme LPCAT3 and induced FASN-mediated lipogenesis, which promoted diet-induced obesity and insulin resistance. CONCLUSIONS: These studies reveal an unexpected role for peroxisome-derived lipids in regulating LXR-dependent lipogenesis and suggest that activation of lipogenesis, combined with dietary lipid overload, exacerbates obesity and metabolic dysregulation.


Assuntos
Resistência à Insulina , Lipogênese , Animais , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Tecido Adiposo/metabolismo , Colesterol/metabolismo , Gorduras na Dieta/metabolismo , Lipogênese/genética , Receptores X do Fígado/metabolismo , Camundongos Knockout , Obesidade/metabolismo
6.
Zool Res ; 45(2): 355-366, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485505

RESUMO

Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males. However, the mechanisms by which testosterone acts on lipid metabolism are not yet fully understood, especially in teleosts. In this study, cyp17a1-/- zebrafish ( Danio rerio) exhibited excessive visceral adipose tissue (VAT), lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis (DNL) enzymes. The assay for transposase accessible chromatin with sequencing (ATAC-seq) results demonstrated that chromatin accessibility of DNL genes was increased in cyp17a1-/- fish compared to cyp17a1+/+ male fish, including stearoyl-CoA desaturase ( scd) and fatty acid synthase ( fasn). Androgen response element (ARE) motifs in the androgen signaling pathway were significantly enriched in cyp17a1+/+ male fish but not in cyp17a1-/- fish. Both androgen receptor ( ar)-/- and wild-type (WT) zebrafish administered with Ar antagonist flutamide displayed excessive visceral adipose tissue, lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis enzymes. The Ar agonist BMS-564929 reduced the content of VAT and lipid content, and down-regulated acetyl-CoA carboxylase a ( acaca), fasn, and scd expression. Mechanistically, the rescue effect of testosterone on cyp17a1-/- fish in terms of phenotypes was abolished when ar was additionally depleted. Collectively, these findings reveal that testosterone inhibits lipid deposition by down-regulating DNL genes via Ar in zebrafish, thus expanding our understanding of the relationship between testosterone and lipid metabolism in teleosts.


Assuntos
Androgênios , Lipogênese , Masculino , Animais , Androgênios/farmacologia , Lipogênese/genética , Peixe-Zebra/genética , Testosterona , Lipídeos , Transdução de Sinais , Cromatina
7.
Artigo em Inglês | MEDLINE | ID: mdl-38412501

RESUMO

Recent scientific studies have highlighted the importance of long-chain noncoding RNAs (lncRNAs) in a variety of metabolic diseases, but the specific functions and mechanisms of lncRNAs in aberrant lipid synthesis associated with aging are unknown. In this work, we inspected the effects of lncRNAs on the lipid metabolism in aging mice, as substantial evidence suggests that aging disturbs lipid metabolism. The results revealed that the expression of lncRNA Gm15232 was significantly elevated in the epididymal white adipose tissue of aging mice compared to adult mice. This upregulation of Gm15232 functioned as a competitive endogenous RNA by inhibiting the expression of miR-192-3p, and the ensuing downregulation of miR-192-3p increased the expression of the glucocorticoid receptor gene, which ultimately stimulated fat synthesis. The upregulation of Gm15232 thus increased lipogenesis through this mechanism. This study reveals a potential target for the treatment of age-related abnormalities of lipid metabolism.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , Lipogênese/genética , Regulação para Cima , Regulação para Baixo
8.
Int J Biol Macromol ; 262(Pt 1): 129875, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320638

RESUMO

Long intergenic non-coding RNA(lincRNA) is transcribed from the intermediate regions of coding genes and plays a pivotal role in the regulation of lipid synthesis. N6-methyladenosine (m6A) modification is widely prevalent in eukaryotic mRNAs and serves as a regulatory factor in diverse biological processes. This study aims to delineate the mechanism by which Linc-smad7 mediates m6A methylation to regulate milk fat synthesis. Tissue expression analysis in this study revealed a high expression of Linc-smad7 in breast tissue during pregnancy. Cell proliferation assays, including CCK8 and EdU assays, demonstrated that Linc-smad7 had no significant impact on the proliferation of mammary epithelial cells. However, during mammary epithelial cell differentiation, the overexpression of Linc-smad7 led to reduced lipid formation, whereas interference with Linc-smad7 promoted lipogenesis. Mechanistically, Linc-smad7 was found to modulate RNA m6A levels, as evidenced by dot blot assays and methylated RNA immunoprecipitation sequencing (MeRIP-Seq). Subsequent validation through RT-qPCR corroborated these findings, aligning with the m6A sequencing outcomes. Furthermore, co-transfection experiments elucidated that Linc-smad7 regulates lipid synthesis in mammary epithelial cells by influencing the expression of METTL14. In summary, these findings underscore the regulatory role of Linc-smad7 in controlling METTL14 gene expression, thereby mediating m6A modifications to regulate lipid synthesis in mammary epithelial cells.


Assuntos
Células Epiteliais , Lipogênese , Animais , Camundongos , Lipogênese/genética , Diferenciação Celular , RNA Mensageiro , Lipídeos
9.
Nat Commun ; 15(1): 1091, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316780

RESUMO

Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice. Mechanistically, CDK6 phosphorylates AMP-activated protein kinase, leading to phosphorylation and inactivation of acetyl-CoA carboxylase, a key enzyme in DNL. CDK6 also phosphorylates CHREBP thus preventing its entry into the nucleus. Ablation of runt related transcription factor 1 in K43M mature adipocytes reverses most of the phenotypes observed in K43M mice. These results demonstrate a role of CDK6 in DNL and a strategy to alleviate metabolic syndromes.


Assuntos
Quinase 6 Dependente de Ciclina , Lipogênese , Animais , Camundongos , Tecido Adiposo Branco/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Lipogênese/genética , Fígado/metabolismo , Fatores de Transcrição/metabolismo
10.
Mar Biotechnol (NY) ; 26(1): 169-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224425

RESUMO

The relationship between conjugated linoleic acid (CLA) and lipogenesis has been extensively studied in mammals and some cell lines, but it is relatively rare in fish, and the potential mechanism of action of CLA reducing fat mass remains unclear. The established primary culture model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes was used in the present study, and the objective was to explore the effects of CLA on intracellular lipid and TG content, fatty acid composition, and mRNA levels of adipogenesis transcription factors, lipase, and apoptosis genes in grass carp adipocytes in vitro. The results showed that CLA reduced the size of adipocyte and lipid droplet and decreased the content of intracellular lipid and TG, which was accompanied by a significant down-regulation of mRNA abundance in transcriptional regulators including peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, sterol regulatory element-binding protein (SREBP) 1c, lipase genes including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL). Meanwhile, it decreased the content of saturated fatty acids (SFAs) and n - 6 polyunsaturated fatty acid (n-6 PUFA) and increased the content of monounsaturated fatty acid (MUFA) and n - 3 polyunsaturated fatty acid (n-3 PUFA) in primary grass carp adipocyte. In addition, CLA induced adipocyte apoptosis through downregulated anti-apoptotic gene B-cell CLL/lymphoma 2 (Bcl-2) mRNA level and up-regulated pro-apoptotic genes tumor necrosis factor-α (TNF-α), Bcl-2-associated X protein (Bax), Caspase-3, and Caspase-9 mRNA level in a dose-dependent manner. These findings suggest that CLA can act on grass carp adipocytes through various pathways, including decreasing adipocyte size, altering fatty acid composition, inhibiting adipocyte differentiation, promoting adipocyte apoptosis, and ultimately decreasing lipid accumulation.


Assuntos
Carpas , Ácidos Graxos Ômega-3 , Ácidos Linoleicos Conjugados , Animais , Lipogênese/genética , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Regulação para Cima , Regulação para Baixo , Carpas/genética , Carpas/metabolismo , Adipócitos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Lipase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
11.
Nat Commun ; 15(1): 627, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245529

RESUMO

Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.


Assuntos
Caquexia , Neoplasias , Animais , Camundongos , Caquexia/genética , Caquexia/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Lipídeos , Lipogênese/genética , Fígado/metabolismo , Camundongos Transgênicos , Neoplasias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
12.
Cancer Biol Ther ; 25(1): 2302162, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241178

RESUMO

Keratin 80 (KRT80) is a filament protein that makes up one of the major structural fibers of epithelial cells, and involved in cell differentiation and epithelial barrier integrity. Here, KRT80 mRNA expression was found to be higher in esophageal cancer than normal epithelium by RT-PCR and bioinformatics analysis (p < .05), opposite to KRT80 methylation (p < .05). There was a negative relationship between promoter methylation and expression level of KRT80 gene in esophageal cancer (p < .05). KRT80 mRNA expression was positively correlated with the differentiation, infiltration of immune cells, and poor prognosis of esophageal cancer (p < .05). KRT80 mRNA expression was positively linked to no infiltration of immune cells, the short survival time of esophageal cancers (p < .05). The differential genes of KRT80 mRNA were involved in fat digestion and metabolism, peptidase inhibitor, and intermediate filament, desosome, keratinocyte differentiation, epidermis development, keratinization, ECM regulator, complement cascade, metabolism of vitamins and co-factor (p < .05). KRT-80-related genes were classified into endocytosis, cell adhesion molecule binding, cadherin binding, cell-cell junction, cell leading edge, epidermal cell differentiation and development, T cell differentiation and receptor complex, plasma membrane receptor complex, external side of plasma membrane, metabolism of amino acids and catabolism of small molecules, and so forth (p < .05). KRT80 knockdown suppressed anti-apoptosis, anti-pyroptosis, migration, invasion, chemoresistance, and lipogenesis in esophageal cancer cells (p < .05), while ACC1 and ACLY overexpression reversed the inhibitory effects of KRT80 on lipogenesis and chemoresistance. These findings indicated that up-regulated expression of KRT80 might be involved in esophageal carcinogenesis and subsequent progression, aggravate aggressive phenotypes, and induced chemoresistance by lipid droplet assembly and ACC1- and ACLY-mediated lipogenesis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Queratinas Tipo II , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Lipogênese/genética , RNA Mensageiro , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo
13.
J Lipid Res ; 65(1): 100472, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949368

RESUMO

Liver steatosis is a common metabolic disorder resulting from imbalanced lipid metabolism, which involves various processes such as de novo lipogenesis, fatty acid uptake, fatty acid oxidation, and VLDL secretion. In this study, we discovered that KLF2, a transcription factor, plays a crucial role in regulating lipid metabolism in the liver. Overexpression of KLF2 in the liver of db/db mice, C57BL/6J mice, and Cd36-/- mice fed on a normal diet resulted in increased lipid content in the liver. Additionally, transgenic mice (ALB-Klf2) that overexpressed Klf2 in the liver developed liver steatosis after being fed a normal diet. We found that KLF2 promotes lipogenesis by increasing the expression of SCAP, a chaperone that facilitates the activation of SREBP, the master transcription factor for lipogenic gene expression. Our mechanism studies revealed that KLF2 enhances lipogenesis in the liver by binding to the promoter of SCAP and increasing the expression of genes involved in fatty acid synthesis. Reduction of KLF2 expression led to a decrease in SCAP expression and a reduction in the expression of SREBP1 target genes involved in lipogenesis. Overexpression of KLF2 also increased the activation of SREBP2 and the mRNA levels of its downstream target SOAT1. In C57BL/6J mice fed a high-fat diet, overexpression of Klf2 increased blood VLDL secretion, while reducing its expression decreased blood cholesterol levels. Our study emphasizes the novelty that hepatic KLF2 plays a critical role in regulating lipid metabolism through the KLF2/SCAP/SREBPs pathway, which is essential for hepatic lipogenesis and maintaining blood cholesterol homeostasis.


Assuntos
Fígado Gorduroso , Lipogênese , Camundongos , Animais , Lipogênese/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/genética , Ácidos Graxos/metabolismo , Colesterol/metabolismo , Homeostase
14.
FEBS J ; 291(2): 256-258, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853932

RESUMO

Fasting leads to many physiological changes in peripheral tissues, including the liver, where suppression of de novo lipogenesis through inhibition of sterol regulatory element-binding protein 1 (SREBP-1) expression and/or activity is a key adaptation to preserve glucose for maintenance of blood glucose levels. Yoshinori Takeuchi and colleagues provide novel mechanistic insights into the regulation of SREBP-1 expression during fasting and highlight the importance of the hypothalamic-pituitary-adrenal axis and, particularly, glucocorticoid-induced binding of the glucocorticoid receptor to enhancer regions of the KLF15 (Kruppel-like factor 15) gene as a novel mechanism underlying the suppression of SREBP-1 during fasting.


Assuntos
Sistema Hipotálamo-Hipofisário , Lipogênese , Lipogênese/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sistema Hipófise-Suprarrenal , Fígado/metabolismo , Jejum
15.
Obesity (Silver Spring) ; 32(1): 120-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873741

RESUMO

OBJECTIVE: The adipose tissue-liver axis is a major regulator of the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Retinoic acid signaling plays an important role in development and metabolism. However, little is known about the role of adipose retinoic acid signaling in the development of obesity-associated NAFLD. In this work, the aim was to investigate whether and how retinoic acid receptor alpha (RARα) regulated the development of obesity and NAFLD. METHODS: RARα expression in adipose tissue of db/db or ob/ob mice was determined. Rarαfl/fl mice and adipocyte-specific Rarα-/- (RarαAdi-/- ) mice were fed a chow diet for 1 year or high-fat diet (HFD) for 20 weeks. Primary adipocytes and primary hepatocytes were co-cultured. Metabolic regulation and inflammatory response were characterized. RESULTS: RARα expression was reduced in adipose tissue of db/db or ob/ob mice. RarαAdi-/- mice had increased obesity and steatohepatitis (NASH) when fed a chow diet or HFD. Loss of adipocyte RARα induced lipogenesis and inflammation in adipose tissue and the liver and reduced thermogenesis. In the co-culture studies, loss of RARα in adipocytes induced inflammatory and lipogenic programs in hepatocytes. CONCLUSIONS: The data demonstrate that RARα in adipocytes prevents obesity and NASH via inhibiting lipogenesis and inflammation and inducing energy expenditure.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Inflamação/metabolismo , Lipogênese/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/metabolismo
16.
FEBS J ; 291(2): 259-271, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702262

RESUMO

During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression. However, the underlying mechanisms of KLF15 induction during fasting remain unclear. In this study, we show that the glucocorticoid receptor (GR) regulates the hepatic expression of KLF15 and, subsequently, lipogenesis through the KLF15-SREBP-1 pathway during fasting. KLF15 is necessary for the suppression of SREBP-1 by GR, as demonstrated through experiments using KLF15 knockout mice. Additionally, we show that GR is involved in the fasting response, with heightened binding to the KLF15 enhancer. It has been widely known that the hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids and plays a significant role in the metabolic response to undernutrition. These findings demonstrate the importance of the HPA-axis-regulated GR-KLF15 pathway in the regulation of lipid metabolism in the liver during fasting.


Assuntos
Lipogênese , Receptores de Glucocorticoides , Camundongos , Animais , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Lipogênese/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Regiões Promotoras Genéticas , Fígado/metabolismo , Jejum
17.
J Anim Breed Genet ; 141(3): 235-256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146089

RESUMO

In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.


Assuntos
Adipogenia , Lipogênese , Bovinos/genética , Animais , Lipogênese/genética , Adipogenia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Epigênese Genética , Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo
18.
Int Immunopharmacol ; 127: 111444, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157698

RESUMO

Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, their biological roles and function mechanisms in NAFLD remain largely unknown. In this study, we found that Gm28382 may be a potential pathogenic lncRNA of NAFLD and highly expressed in NAFLD through RNA-seq. Overexpression of Gm28382 significantly enhanced the lipid accumulation in AML12 cells, whereas Gm28382 silencing reduced lipogenesis both in palmitic acid (PA)-induced AML12 cells and high fat diet (HFD)-induced mice. Then, bioinformatics were employed to speculate the potential interacting genes of Gm28382, and found that Gm28382 may regulate ChREBP expression through binding with miR-326-3p. Fluorescence in situ hybridization (FISH), dual luciferase reporter assay, immunofluorescence RNA pull-down and RNA immunoprecipitation (RIP) assays were used to validate the binding and targeting relationship of these genes, and we confirmed that Gm28382 competitively binds to miR-326-3p to increase ChREBP expression as a ceRNA. Mechanistically, overexpression of Gm28382 upregulated the ChREBP-mediated lipid synthesis signaling pathway, but the function was sabotaged by miR-326-3p deletion or ChREBP overexpression. Furthermore, in PA-challenged AML12 cells or HFD-induced mice, silencing of Gm28382 reversed the aberrant ChREBP signaling pathway and lipid accumulation, whereas ChREBP overexpression or liver-specific silencing of miR-326-3p blocked this function of Gm28382. Collectively, these findings reveal a critical role of Gm28382 in the promotion of lipogenesis in NAFLD by regulating the ChREBP signaling pathway through interaction with miR-326-3p, which could serve as a potential therapeutic target for NAFLD treatment.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , RNA Longo não Codificante , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hibridização in Situ Fluorescente , Transdução de Sinais/genética , Fatores de Transcrição/genética , Lipídeos
19.
J Clin Invest ; 134(4)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051585

RESUMO

Worldwide, over 800 million people are affected by kidney disease, yet its pathogenesis remains elusive, hindering the development of novel therapeutics. In this study, we used kidney-specific expression of quantitative traits and single-nucleus open chromatin analysis to show that genetic variants linked to kidney dysfunction on chromosome 20 target the acyl-CoA synthetase short-chain family 2 (ACSS2). By generating ACSS2-KO mice, we demonstrated their protection from kidney fibrosis in multiple disease models. Our analysis of primary tubular cells revealed that ACSS2 regulated de novo lipogenesis (DNL), causing NADPH depletion and increasing ROS levels, ultimately leading to NLRP3-dependent pyroptosis. Additionally, we discovered that pharmacological inhibition or genetic ablation of fatty acid synthase safeguarded kidney cells against profibrotic gene expression and prevented kidney disease in mice. Lipid accumulation and the expression of genes related to DNL were elevated in the kidneys of patients with fibrosis. Our findings pinpoint ACSS2 as a critical kidney disease gene and reveal the role of DNL in kidney disease.


Assuntos
Acetato-CoA Ligase , Nefropatias , Lipogênese , Animais , Humanos , Camundongos , Acetato-CoA Ligase/genética , Fibrose , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Túbulos Renais/metabolismo , Lipogênese/genética
20.
Front Endocrinol (Lausanne) ; 14: 1289004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152126

RESUMO

Background and aims: Wnt/ß-catenin signaling plays an important role in regulating hepatic metabolism. This study is to explore the molecular mechanisms underlying the potential crosstalk between Wnt/ß-catenin and mTOR signaling in hepatic steatosis. Methods: Transgenic mice (overexpress Wnt1 in hepatocytes, Wnt+) mice and wild-type littermates were given high fat diet (HFD) for 12 weeks to induce hepatic steatosis. Mouse hepatocytes cells (AML12) and those transfected to cause constitutive ß-catenin stabilization (S33Y) were treated with oleic acid for lipid accumulation. Results: Wnt+ mice developed more hepatic steatosis in response to HFD. Immunoblot shows a significant increase in the expression of fatty acid synthesis-related genes (SREBP-1 and its downstream targets ACC, AceCS1, and FASN) and a decrease in fatty acid oxidation gene (MCAD) in Wnt+ mice livers under HFD. Wnt+ mice also revealed increased Akt signaling and its downstream target gene mTOR in response to HFD. In vitro, increased lipid accumulation was detected in S33Y cells in response to oleic acid compared to AML12 cells reinforcing the in vivo findings. mTOR inhibition by rapamycin led to a down-regulation of fatty acid synthesis in S33Y cells. In addition, ß-catenin has a physical interaction with mTOR as verified by co-immunoprecipitation in hepatocytes. Conclusions: Taken together, our results demonstrate that ß-catenin stabilization through Wnt signaling serves a central role in lipid metabolism in the steatotic liver through up-regulation of fatty acid synthesis via Akt/mTOR signaling. These findings suggest hepatic Wnt signaling may represent a therapeutic strategy in hepatic steatosis.


Assuntos
Fígado Gorduroso , Lipogênese , Camundongos , Animais , Lipogênese/genética , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Oleico/farmacologia , beta Catenina/metabolismo , Fígado Gorduroso/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...